
Building Program Vector Representations
for Deep Learning

Hao Peng, Lili Mou, Ge Li(B), Yuxuan Liu, Lu Zhang, and Zhi Jin

Software Institute, School of EECS, Peking University Beijing, Beijing 100871,
People’s Republic of China

{penghao.pku,doublepower.mou,liuyuxuan}@gmail.com,
{lige,zhanglu,zhijin}@sei.pku.edu.cn

Abstract. Deep learning has made significant breakthroughs in various
fields of artificial intelligence. However, it is still virtually impossible to
use deep learning to analyze programs since deep architectures cannot be
trained effectively with pure back propagation. In this pioneering paper,
we propose the “coding criterion” to build program vector representa-
tions, which are the premise of deep learning for program analysis. We
evaluate the learned vector representations both qualitatively and quan-
titatively. We conclude, based on the experiments, the coding criterion is
successful in building program representations. To evaluate whether deep
learning is beneficial for program analysis, we feed the representations to
deep neural networks, and achieve higher accuracy in the program classi-
fication task than “shallow” methods. This result confirms the feasibility
of deep learning to analyze programs.

1 Introduction

Machine learning-based program analysis has been studied long in the literature
[14,3]. Hindle et al. compare programming languages to natural languages and
conclude that programs have rich statistical properties [10]. These properties are
difficult for human to capture, but they justify using learning-based approaches
to analyze programs.

The deep neural network has become one of the prevailing machine learning
approaches since 2006 [11]. It has made significant breakthroughs in a variety of
fields, such as natural language processing [6,19], image processing [12,4], speech
recognition [7,15], etc. Such striking results raise the interest of its applications
in the field of program analysis. Using deep learning to automatically capture
program features is an interesting and prospective research area.

Unfortunately, it has been practically infeasible for deep learning to analyze
programs up till now. Since no proper “pretraining” method is proposed for
programs, deep neural networks cannot be trained effectively with pure back
propagation [2,8].

H. Peng and L. Mou—Equal contribution.

c© Springer International Publishing Switzerland 2015
S. Zhang et al. (Eds.): KSEM 2015, LNAI 9403, pp. 547–553, 2015.
DOI: 10.1007/978-3-319-25159-2 49



548 H. Peng et al.

In this paper, we propose novel “coding criterion” to build program vector
representations based on abstract syntax trees (ASTs). In such vector repre-
sentations, each node in ASTs (e.g. ID, Constant) is mapped to a real-valued
vector. They can emerge high-level abstract features, and thus benefit ultimate
tasks. We analyze the learned representations both qualitatively and quantita-
tively. We conclude from the experiments that the coding criterion is successful
in building program vector representations.

In the rest of this paper, we first we explain our approach in detail in Section
2. Then we give experimental results in Section 3. Last, we draw our conclusion
in Section 4.

2 Coding Criterion for Program Representation Learning

In this section, we first discuss the granularities of program representation. We
settle for the granularity of nodes in abstract syntax trees (ASTs). In Subsection
2.2, we formalize our approach and give the learning objective. In Subsection 2.3,
we present the stochastic gradient descent algorithm for training.

2.1 The Granularity

Vector representations map a symbol to a real-valued vector. Possible granular-
ities of the symbol include character-level, token-level, etc.

– Character-level. Treating each character as a symol. Although some
research explore character-level modeling for NLP [20], it is improper for
programming languages. For example, the token double in a C code refers
to a data type. But if one writes doubles, it is an identifier (e.g., a function
name).

– Token-level. Learning the representations of all tokens, including types and
identifiers etc. Since programmers can declare their own identifiers in their
source codes, e.g., func1, func2, many of the identifiers may appear only a
few times, resulting in the undesired data sparseness. Hence, it is improper
for representation learning at this level.

– Nodes in ASTs. Learning the representations for nodes in ASTs, e.g.,
FuncDef, ID, Constant. The AST is more compressed compared with token-
level representation. Furthermore, there are only finite many types of nodes
in ASTs. The tree structural nature of ASTs also provides opportunities
to capture structural information of programs. This level is also used in
traditional program analysis like code clone detection [1,13], vulnerability
extrapolation [21], etc.

– Statement-level, function-level or higher. Theoretically, a statement,
a function or even a program can also be mapped to a real-valued vector.
However, such representations cannot be trained directly. A possible app-
roach of modeling such complex stuff is by composition. Such researches in
NLP is often referred to as compositional semantics [18]. It is very hard to
capture the precise semantics; the “semantic barrier” is still not overcome.



Building Program Vector Representations for Deep Learning 549

2.2 Formalization

The basic criterion of representation learning is that similar symbols should have
similar representations. Further, symbols that are similar in some aspects should
have similar values in corresponding feature dimensions.

In our scenario, similarity is defined based on the following intuition: similar
symbols have similar usages: both ID and Constant can be an operand of a
binary operator; both For and While are a block of codes, etc.

We denote the vector of node x as vec(x). vec(·) ∈ R
Nf , where Nf is the

dimension of features. For each non-leaf node p in ASTs and its direct chil-
dren c1, · · · , cn, their representations are vec(p), vec(c1), · · · , vec(cn). The pri-
mary objective is that

vec(p) ≈ tanh

(
n∑

i=1

liWi · vec(ci) + b

)
(1)

where Wi ∈ R
Nf×Nf is the weight matrix for node ci; b ∈ R

Nf is the bias
term. The weights (Wi’s) are weighted by the number of leaves under ci and the
coefficients are

li =
#leaves under ci
#leaves under p

(2)

Since different nodes in ASTs may have different numbers of children, the
number of Wi’s is hard to determine. To solve this problem, we propose continu-
ous binary tree, where there are two weight matrices as parameters, namely Wl

and Wr. Any weight Wi is a linear combination of the two matrices. That is,
regardless the number of children, we treat it as a “binary” tree. Formally, if p
has n (n ≥ 2) children, then for child ci,

Wi =
n − i

n − 1
Wl +

i − 1
n − 1

Wr (3)

Now that we are able to calculate the weight Wi for each node, we measure
closeness by the square of Euclidean distance, as below:

d =

∥∥∥∥∥vec(p) − tanh

(
n∑

i=1

liWi · vec(ci) + b

)∥∥∥∥∥
2

2

(4)

We applied negative sampling [5,18,17]: for each data sample x, a new nega-
tive sample xc is generated. We randomly select a symbol in each training sample
and substitute it with a different random symbol. The objective is that dc should
be at least as large as d+Δ, where Δ is the margin and often set to 1. The error
function of training sample x(i) and its negative sample x

(i)
c is then

J(d(i), d(i)c ) = max
{

0,Δ + d(i) − d(i)c

}
(5)



550 H. Peng et al.

To prevent our model from over-fitting, we can add �2 regularization to
weights (Wl and Wr). The overall training objective is then

minimize
Wl,Wr,b

1
2N

N∑
i=1

J(d(i), d(i)c ) +
λ

2M
(‖Wl ‖2F + ‖Wr ‖2F

)
(6)

where N is the number of training samples; M = 2N2
f denotes the number of

weights; ‖ · ‖F refers to Frobenius norm; λ is the hyperparameter that strikes
the balance between coding error and �2 penalty.

2.3 Training

The numerical optimization algorithm we use is stochastic gradient descent with
momentum. The model parameters Θ =

(
vec(·),Wl,Wr, b

)
are first initial-

ized randomly. Then, for each data sample x(i) and its negative sample x
(i)
c ,

we compute the cost function according to Formula 6. Back propagation algo-
rithm is then applied to compute the partial derivatives and the parameters
are updated accordingly. This process is looped until convergence. The coding
criterion of vector representation learning—as a pretraining phase for neural
program analysis—is “shallow,” through which error can back propagate. Thus,
useful features are learned for AST nodes.

To speed up training, we adopt the momentum method, where the partial
derivatives of the last iteration is added to the current ones with decay ε.

3 Experiments

We first evaluate our learned representations by k-means clustering. We then
perform supervised learning in the program classification task. The experimental
results show that meaningful representations, as a means of pretraining, make
the network much easier to train in deep architectures. We also achieve higher
accuracy with the deep, tree-based convolutional neural network compared with
baseline methods.

3.1 Qualitative Evaluation: k-means Clustering

As we have stated, similar nodes in ASTs (like ID, Constant) should have similar
representations. To evaluate whether our coding criterion has accomplished this
goal, we perform k-means clustering, where k is set to 3. The result is shown
in Table 1. As we see, almost all the symbols in Cluster 1 are related to data
reference/manipulating. Cluster 2 is mainly about declarations. Cluster 3 con-
tains more symbols, the majority of which are related to control flow. This result
confirms our conjecture that similar symbols can be clustered into groups with
the distributed vector representations that are learned by our approach.



Building Program Vector Representations for Deep Learning 551

Table 1. The result of k-means clustering. k is set to 3.

Cluster Sybmols

1
UnaryOp, FuncCall, Assignment, ExprList,

StructRef, BinaryOp, ID, Constant, ArrayRef

2
FuncDef, TypeDecl, FuncDecl, Compound,

ArrayDecl, PtrDecl, Decl, Root

3

Typedef, Struct, For, Union, CompoundLiteral,
TernaryOp, Label, InitList, IdentifierType,

Return, Enum, Break, DoWhile, Case,
DeclList, Default, While, Continue,

ParamList, Enumerator, Typename, Goto,
Cast, Switch, EmptyStatement,

EnumeratorList, If

Fig. 1. Learning curves of training (A) and CV (B). The learned program vector rep-
resentations improve supervised learning in terms of both generalization and optimiza-
tion.

3.2 Quantitative Evaluation: Improvement for Supervised Learning

We now evaluate whether building program vector representations is beneficial
for real-world tasks, i.e., whether they will improve optimization and/or gener-
alization for supervised learning of interest.

The dataset comes from an online Open Judge system1, which contains a
large number of programming problems for students. We select four problems
for our program classification task. Source codes (in C programming language)
of the four problems are downloaded along with their labels (problem IDs). We
split the dataset by 3 : 1 : 1 for training, cross-validating (CV) and testing.

Since no effective program representation existed before, the TBCNN [16]
model is not trained efficiently, as the blue curve demonstrates in Part A of
Figure 1.

If the vector representations and the coding parameters, namely vec(·), Wl,
Wr and b, are initialized as are learned by our coding criterion, the training and
CV errors decrease drastically (the red and magenta curves) after a plateaux of
about 15 epochs, which leads to the high performance of TBCNN.

To evaluate whether deep learning may be helpful for program analysis, we
compare TBCNN to baseline methods in the program classification task. In
these baseline methods, we adopt the bag-of-words model, which is a widely-used
approach in text classification [9]. As shown in Table 2, logistic regression, as a

1 http://programming.grids.cn/

http://programming.grids.cn/


552 H. Peng et al.

Table 2. Accuracy of Program Classification.

Method Accuracy

Random guess 25.00%
Logistic regression 81.16%

SVM with RBF kernel 91.14%
TBCNN (a deep learning approach) 95.33%

linear classifier, achieves 81.16% accuracy. The support vector machine (SVM)
with radial basis function (RBF) kernel explores non-linearity, and improves the
result by 10%. By automatically exploring the underlying features and patterns
of programs, TBCNN further improves the accuracy by more than 4%. This
experiment suggests the promising future of deep leaning approaches in the field
of program analysis.

4 Conclusion

In this paper, we study deep learning and representation learning in the field of
program analysis. We propose a novel “coding criterion” to build vector repre-
sentations of nodes in ASTs. We also feed the learned representations to a deep
neural network to classify programs. The experimental results show that our rep-
resentations successfully capture the similarity and relationships among different
nodes in ASTs. We conclude that the coding criterion is successful in building
program vector representations. The experiments also confirm the feasibility of
deep learning to analyze programs.

Acknowledgments. This research is supported by the National Basic Research Pro-
gram of China (the 973 Program) under Grant No. 2015CB352201 and the National
Natural Science Foundation of China under Grant No. 61232015.

References

1. Baxter, I., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using
abstract syntax trees. In: Proceedings of the International Conference on Software
Maintenance (1998)

2. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training
of deep networks. In: Advances in Neural Information Processing Systems (2007)

3. Canavera, K., Esfahani, N., Malek, S.: Mining the execution history of a software
system to infer the best time for its adaptation. In: Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Software Engineering
(2012)

4. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (2012)

5. Collobert, R., Weston, J.: A unified architecture for natural language processing:
deep neural networks with multitask learning. In: Proceedings of the 25th Interna-
tional Conference on Machine Learning (2008)



Building Program Vector Representations for Deep Learning 553

6. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Nat-
ural language processing (almost) from scratch. The Journal of Machine Learning
Research 12, 2493–2537 (2011)

7. Dahl, G., Mohamed, A., Hinton, G.E.: Phone recognition with the mean-covariance
restricted Boltzmann machine. In: Advances in Neural Information Processing Sys-
tems (2010)

8. Erhan, D., Manzagol, P., Bengio, Y., Bengio, S., Vincent, P.: The difficulty of train-
ing deep architectures and the effect of unsupervised pre-training. In: Proceedings
of International Conference on Artificial Intelligence and Statistics (2009)

9. Feldman, R., Sanger, J.: The Text Mining Handbook: Advanced Approaches in
Analyzing Unstructured Data. Cambridge University Press (2007)

10. Hindle, A., Barr, E., Su, Z., Gabel, M., Devanbu, P.: On the naturalness of software.
In: Proceedings of 34th International Conference on Software Engineering (2012)

11. Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets.
Neural Computation 18(7), 1527–1554 (2006)

12. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convo-
lutional neural networks. In: Advances in Neural Information Processing Systems
(2012)

13. Lazar, F., Banias, O.: Clone detection algorithm based on the abstract syntax
tree approach. In: Proceedings of 9th IEEE International Symposium on Applied
Computational Intelligence and Informatic (2014)

14. Lu, H., Cukic, B., Culp, M.: Software defect prediction using semi-supervised learn-
ing with dimension reduction. In: Proceedings of the 27th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (2012)

15. Mohamed, A., Dahl, G., Hinton, G.: Acoustic modeling using deep belief net-
works. IEEE Transactions on Audio, Speech, and Language Processing 20(1), 14–
22 (2012)

16. Mou, L., Peng, H., Li, G., Xu, Y., Zhang, L., Jin, Z.: Tree-based convolution:
a new neural architecture for sentence modeling (2015). CoRR abs/1504.01106.
http://arxiv.org/abs/1504.01106

17. Socher, R., Chen, D., Manning, C., Ng, A.: Reasoning with neural tensor networks
for knowledge base completion. In: Advances in Neural Information Processing
Systems (2013)

18. Socher, R., Le, Q., Manning, C., Ng, A.: Grounded compositional semantics for
finding and describing images with sentences. In: NIPS Deep Learning Workshop
(2013)

19. Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C., Ng, A., Potts, C.:
Recursive deep models for semantic compositionality over a sentiment treebank. In:
Proceedings of Conference on Empirical Methods in Natural Language Processing
(2013)

20. Sutskever, I., Martens, J., Hinton, G.: Generating text with recurrent neural net-
works. In: Proceedings of the 28th International Conference on Machine Learning
(2011)

21. Yamaguchi, F., Lottmann, M., Rieck, K.: Generalized vulnerability extrapolation
using abstract syntax trees. In: Proceedings of 28th Annual Computer Security
Applications Conference (2012)

http://arxiv.org/abs/http://arxiv.org/abs/1504.01106

	Building Program Vector Representations for Deep Learning
	1 Introduction
	2 Coding Criterion for Program Representation Learning
	2.1 The Granularity
	2.2 Formalization
	2.3 Training

	3 Experiments
	3.1 Qualitative Evaluation: k-means Clustering
	3.2 Quantitative Evaluation: Improvement for Supervised Learning

	4 Conclusion


